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I. QCD and Jets



• QCD is theory of “Strong Interactions” 
amongst quarks and gluons

• Observed strength of interaction is function of energy

• At ordinary energies, 
quarks and gluons 
always “confined” into 
“colorless” hadrons.

Quantum Chromodynamics

2004

PDG 2010

“Asymptotic Freedom”

q q

g g



Precision Extraction from Event Shapes

Abbate, Fickinger, Hoang, 
Mateu, Stewart (2010)

NNNLL perturbative prediction + 
nonperturbative soft power 
correction led to most precise 
extraction of strong coupling from 
event shapes
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Jets from New Physics

Any new particles that feel the 
strong force will decay to quarks 

and gluons, producing jets!

LHC, Tevatron collide 
quarks and gluons 
bound in protons

e.g. squarks, gluinos

produce jets!

p

produce jets copiously,
and any new particles 
that interact strongly
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II. Event Shapes



Probing Jets Globally with Event Shapes

L R

m2 = m2
L +m2

R

� = 1� |pL|+ |pR|
Q

Probes of full 
event structure
“Event Shapes”

collinear jets

soft radiation
Consider 
e+e- to 2 Jets

e.g. Jet Mass Sum or
Thrust

thrust axis

0 in 2-jet limit



Event Shapes with Variable Weights

L R

e.g. Angularities e�|�|(1�a)

⌘ = 0

a=-1/2

a=-2

⌘ = 0

⌘ = 1⌘ = �1

a = 0Thrust is

�a =
1

Q

X

i⇥X

|pi
T |e�|�i|(1�a)

Berger, Kucs, Sterman

Weight with 
different measures 
to probe event 
structure



Shapes of Jets with Finite Size

Identify jets with algorithm:
cone, kT, anti-kT...

R
jet radius

jet energy veto E0

Measure individual jet shapes:

�a =
1

EJ

X

i⇥jet

|pi
T |e�|�i|(1�a) �(r/R) r

REllis, Kunzst, Soper;
CDF

= energy fraction 
inside subcone

“The” Jet Shape:

Ellis, Hornig, CL, Vermilion, Walsh (2010)

don’t yet know how to 
sum logs of vetoes or R’s



A Global Event Shape to Veto Jets: N-Jettiness

p p

qa = xaPa

qb = xbPb

q1
J

q2
J

⌧N =
2

Q2

X

i

min{qa · pi, qb · pi, q
1
J · pi, . . . , q

N
J · pi}

Stewart, Tackmann, Waalewijn (2010)

Use in e+e-, ep, or 
pp collisions



III. A Theory Toolbox 
for Precision Jet Physics



Large Logs in Perturbation Theory

• If we calculate event shape       cross section in QCD perturbation theory, we will find:

• In the narrow-jet limit             the logs grow large and spoil the perturbative 
expansion. Reorganize the expansion:
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Large Logs in Perturbation Theory

• If we calculate event shape       cross section in QCD perturbation theory, we will find:

• In the narrow-jet limit             the logs grow large and spoil the perturbative 
expansion. Reorganize the expansion:
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New power counting when

ln ⌧ ⇠ 1
↵

:

e+e- event shapes so far 
computed to N3LL

pp and ep event shapes  
to NNLL
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Factorization of Jet Cross Sections

Collins, Soper, Sterman 
(1980s)

Event shapes in SCET:
Bauer, CL, Fleming, Sterman

PRD 78, 034027 (2008)

Separate into physics at disparate time scales:
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Factorization of Jet Cross Sections

Collins, Soper, Sterman 
(1980s)

Event shapes in SCET:
Bauer, CL, Fleming, Sterman

PRD 78, 034027 (2008)

Separate into physics at disparate time scales:

(For pp collisions, also 
factor into PDFs and 
“beam functions” for ISR)

H

Partonic hard 
scattering cross 
section

J2
Jet Functions: 
Collinear splitting, 
showering

J1

J2

S

nA

nB

n1

n2

Soft radiation, 
color exchange
(hadronization)



soft

collinear
hard

Q

anti-collinear

p2 � Q2�4

p2 � Q2�2

Q�2

p2 � Q2

a = 0E + pz

E � pz

Hierarchy of scales

hard scale µH = Q

jet/beam scale µJ,B = Q
p

⌧

soft scale µS = Q⌧

pc = Q
n

2
+ Q⌧

n̄

2
+ Q

p
⌧ n̂?

p2
c = Q2⌧

ps = Q⌧
n

2
+ Q⌧

n̄

2
+ Q⌧ n̂?

p2
s = Q2⌧2

Jet cross sections 
depend on three 

separated energy scales:

Use effective field theory:
Integrate out hard degrees of 

freedom, form theory of 
collinear and soft DOF

n



soft gluons “see” 
only direction 
and color of jet

p

k

p+ k

collinear to n

collinear

soft

Collinear sector:
p = Q

n

2

collinear to n

Soft sector:

q
n̄

2

⇠ Qn�
(Qn+ qn̄)2

Y

i

1

n · qi
n�

integrate out hard propagators match onto operators in SCET

⇠ p� ig�µta

(p+ k)2
p� keep leading order part of diagram nµta

n · k
n�
2

Soft Collinear Effective Theory Bauer, Fleming, Luke, Pirjol, 
Stewart (2000, 2001)

• Integrate out hard modes from QCD, match onto theory of soft and collinear 
modes in power expansion in � ⇠ pT /Q
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soft gluons “see” 
only direction 
and color of jet

p

k

p+ k

decouples 
different 
collinear 
directions

decouples 
soft from 
collinear

collinear to n

collinear

soft

Collinear sector:
p = Q

n

2

collinear to n

Soft sector:

q
n̄

2

⇠ Qn�
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Q

• Solutions of evolution equations contain logs 
resummed to all orders in

Full QCD

soft + collinear EFT
Q
�
�

soft EFT
Q�

H ⇠ 1 + �n
s lnm

µ

Q

J ⇠ 1 + �n
s lnm

µ

Q
p
⇥

S ⇠ 1 + �n
s lnm

µ

Q⇥

↵s

evolution with
calculable

µ

µ

evolve each function in 
factorization theorem from scale 

where logs are minimized

• Effective theory gives equations for evolution of hard, jet, and 
soft functions in factorization theorem with energy scale    . 

Resummation from Evolution 
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Full QCD

soft + collinear EFT
Q
�
�

soft EFT
Q�

H ⇠ 1 + �n
s lnm

µ

Q

J ⇠ 1 + �n
s lnm

µ

Q
p
⇥

S ⇠ 1 + �n
s lnm

µ

Q⇥

↵s

evolution with
calculable

µ

µ

evolve each function in 
factorization theorem from scale 

where logs are minimized

• Effective theory gives equations for evolution of hard, jet, and 
soft functions in factorization theorem with energy scale    . 

Resummation from Evolution 

µ
d

dµ
F (QF , µ) = �F (µ)F (QF , µ)

�F (µ) = �F [↵s(µ)] ln
Q2

F

µ2
+ �F [↵s(µ)]“anomalous dimension”



Resummation of Logs

• Solution of RG Equation automatically resums logs to all 
orders in ↵s

• Order of logarithmic accuracy (LL, NLL, etc.) depends on 
accuracy to which anomalous dimensions and fixed-order 
matrix elements are known:

LL 1 1

NLL 1

NNLL

N3LL
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Resummation of Logs

• Solution of RG Equation automatically resums logs to all 
orders in ↵s

• Order of logarithmic accuracy (LL, NLL, etc.) depends on 
accuracy to which anomalous dimensions and fixed-order 
matrix elements are known:

LL 1 1

NLL 1

NNLL

N3LL

�F �F �[↵s]

↵s

↵s

↵s

↵s

↵2
s ↵2

s

↵2
s↵3

s ↵3
s

H,J, S

↵3
s ↵2

s↵4
s ↵4

s

+ 1 order for 
“primed” counting



Universal Soft Power Corrections

• Soft power corrections shift mean values of event shapes
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calculable coefficient

universal nonperturbative parameter
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Use factorization 
to prove true

CL, Sterman
PRD 75, 014022 (2007)

Universal Soft Power Corrections

• Soft power corrections shift mean values of event shapes

observable dependent, 
calculable coefficient

universal nonperturbative parameter

conjecture from single 
soft gluon emission: 
Dokshitzer, Webber 
(1995, 1997)

ce

Crucial to obtain 
reliable extractions of 
strong coupling from 

event shapes

Abbate, Fickinger, Hoang, 
Mateu, Stewart (2010)

hei = heiPT + ce
⌦1

Q

⌦1

• SCET: First rigorous proof (and field theory definition of      ) 
from factorization theorem and boost invariance of soft radiation:

soft radiation sees only direction, not energy, of original collinear partons, invariant to boosts along z

⌦1

c⌧a =
2

1� a

c⌧ = 2



IV. Predictions for e+e- event shapes

 Run : even t  7220 :  76402   Da t e  960712  T ime   30026                                  
 Ebeam 80 . 500  Ev i s   80 . 3  Emi ss   80 . 7  V t x  (   - 0 . 05 ,    0 . 07 ,    0 . 51 )               
 Bz=4 . 028  Bunch l e t  1 / 1   Th r us t =0 . 7232  Ap l an=0 . 0078  Ob l a t =0 . 5182  Sphe r =0 . 3367     

C t r k (N=  42  Sump=  64 . 8 )  Eca l (N=  48  SumE=120 . 9 )  Hca l (N=  7  SumE=   4 . 5 )  
Muon (N=   0 )  Sec  V t x (N=  1 )  Fde t (N=  0  SumE=   0 . 0 )  

X

Y

Z

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5
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mod

1

Q=mZ

Abbate, Fickinger, Hoang, 
Mateu, Stewart (2010)

Most precise prediction of thrust 
comes from SCET

NNNLL perturbative 
prediction + 
nonperturbative soft 
power correction led to 
most precise extraction 
of strong coupling from 
event shapes

NNNLL resummed 
perturbative distribution

Becher, Schwartz (2008)

Factorization:
Bauer, CL, Fleming, Sterman

PRD 78, 034027 (2008)
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Most precise extractions of strong coupling

Abbate, Fickinger, Hoang, Mateu, Stewart (2010) Hoang, Kolodrubetz, 
Mateu, Stewart (2013)

GenEvA Collaboration (2012)
(improved Monte Carlo with NLL 
and higher-order theory input)

Best fit: ↵s(MZ) = 0.1135
with Pythia Tune 1
(similar NP shift to above)

Generically, better perturbative 
calculations + rigorous 
treatment of nonperturbative 
corrections gives smaller ↵s

-7.5% shift from NP 
power corrections



Resummed angularity event shapes

• Tunable class of event shapes:

Berger, Kucs, Sterman (2003)
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tune collinear scale in SCETHornig, CL, Ovanesyan 
JHEP 05, 122 (2009)
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• e.g. jet shapes in e+e- to 3 Jets:

• Measure one jet’s shape, 
e.g. quark or gluon jet 

• We derived new factorization theorem 
to account for jet algorithm dependence, 
new jet and soft functions for

Factorization of Jet Shape Distributions

�̂aprobe jet shape

H

S

J1

J2

e

e
J3

R

Ellis, Hornig, CL, 
Vermilion, Walsh 

PLB 689, 82 (2010)
JHEP 11, 101 (2010)

a 6= 0

e�|�|(1�a)

⌘ = 0

a=-2

a=1/2



Q = 500 GeV
EJ = 150 GeV

Ellis, Hornig, CL, Vermilion, Walsh (2010)

Resummed Predictions of Jet Shape 
Distributions vs. Monte Carlo

Predictions for e+e- 
to 3 jets in “Mercedes-

Benz” configuration

Gain ability to 
discriminate 

between quark 
and gluon jets!



-410
-3

10 -210 -110

-6
10

-5
10

-410

-3
10

-210

-110

0

50

100

150

200

250

300

350

 distribution for a = -3.0 vs. a = 0.8, for gluon jetsaτ

Ellis, Hornig, CL, Vermilion, Walsh

Using angularities to distinguish quark and gluon jets

-410
-3

10 -210 -110

-6
10

-5
10

-410

-3
10

-210

-110

0

100

200

300

400

500

600

 distribution for a = -3.0 vs. a = 0.8, for quark jetsaτ

Measure multiple angularities (different a’s) for each jet, use to separate quark and 
gluon jets statistically.

With two different a’s, can find cuts enhancing fraction of quark-to-gluon jets in 
e+e- to 3-jet events by factor of 30-40. Enhance gluon-to-quark jets by factor of 5-10.

Extend to multivariate analysis with many a’s for greater discrimination.
see also recent work by Gallicchio and Schwartz (2012) and Larkoski, Salam, and Thaler (2013)



Using -Jettiness

to Measure Jets in DIS

in Ways

Daekyoung Kang (MIT), CL, Iain Stewart (MIT)
arXiv: 1303.6952



DIS Kinematics

Q2 = �q2
e

u
ud

e
k0

k

q = k � k0

P

x =
Q

2

2P · q

y =
P · q

P · k

p

2
X =

1� x

x

Q

2

momentum transfer

Björken scaling 
variable

lepton energy 
loss in proton 

rest frame

pX = q + P
total momentum 
of final hadronic 

state

invariant mass of 
final hadronic 

state

Q

2 = xys

s = (k + P )2 squared center-
of-mass energy

x! 1Limit corresponds to single collimated jet in final state 

We will look away from x = 1 at two-jet like final states 

hadronic jets

soft hadrons



Strong Coupling

C. Glasman, in the Proceedings of the Workshop 
on Precision Measurements of         [1110.0016]  

Extractions from 
exclusive jet cross 

sections have order 
10-20% uncertainty, 

dominated by 
theory

Improve to level 
of e+e-?

↵s
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P
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pJ

N-jettiness

An inclusive event shape over all final state hadrons excluding more than N jets:

Stewart, Tackmann, Waalewijn (2010)

Vector       is aligned with the incoming proton beam and             with final state jets.
Final state hadrons i are grouped with the axis “closest” to it.

As              , final state contains exactly N+1 pencil-like jets (one from beam radiation).

We will look at “1-jettiness” in DIS.

q1,...,N

⌧N ! 0

Center-of-momentum 
frame:

qB

⌧N =
2

Q2

X

i

min{qB · pi, q1 · pi, . . . , qN · pi}

⌧1 =
2

Q2

X

i

min{qB · pi, qJ · pi}

k =
p
s
nz

2 P =
p
s
n̄z

2
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Vector       is aligned with the incoming proton beam and             with final state jets.
Final state hadrons i are grouped with the axis “closest” to it.

As              , final state contains exactly N+1 pencil-like jets (one from beam radiation).

We will look at “1-jettiness” in DIS.

q1,...,N

⌧N ! 0
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frame:
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X

i

min{qB · pi, q1 · pi, . . . , qN · pi}
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How shall we pick qB and qJ?
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p
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p
s
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⌧a
1

Three choices for DIS 1-jettiness

(c) ⌧m
1

pT
B averaged over, pT

J = 0

qJ true jet axis

HJHB

qB = xP

q

pB

pJ

qB = xP

qJ = true jet axis

qJ is Aligned with the jet momentum, 
with no relative label transverse momentum:

find by jet algorithm or minimization

Kang, Mantry, Qiu (2012)

CM frame

depends on momenta 
of final-state hadrons

q

xP � k?⇠P

pISR = (⇠ � x)P + k?
qJ = q + xP � k?

k? ⇠ Q�



⌧ b
1

(b) ⌧B
1

HJHB

q

pT
J = pT

B

qJ = q + xP

qB = xP

pB

pJ

Three choices for DIS 1-jettiness

qJ no longer exactly aligned with jet, but simpler in that q+xP 
is given only by lepton and initial-state proton momenta

CM frame

qB = xP

qJ = q + xP

same as DIS thrust 
by Antonelli, Dasgupta, Salam 
(1999)

qB = Qn̄z qJ = Qnz

Breit frame:

1-jettiness regions are hemispheres in Breit frame

Boost

e e0

P

HJHB

pB

pJ

q = (0, 0, 0, Q)



has to be small for 1-jettiness 

qB = P

qJ = k

Three choices for DIS 1-jettiness

CM frame

measures thrust in back-to-back hemispheres in Center-of-momentum frame

q = y

p
s

nz

2
� xy

p
s

n̄z

2
+

p
1� y Qn̂?

momentum transfer q itself has a nonzero transverse component:

seemingly simplest definition: in practice hardest to calculate!

HJHB

p?J = p?B + q?

qJ = kqB = P
q

(a) ⌧CM
1

pJ

pB
p?J

p?J

⌧ c
1

⌧ c
1 to be small ) 1� y ⇠ �2Restriction:

(electron momentum)



Do you have to measure the beam region?

• One can use momentum conservation to 
measure 1-jettiness just from jet region:

e e0

P

HJHB

pB

pJ
e.g.        in Breit frame⌧ b1

⌧ b1
Breit
= 1� 2

Q

X

i2Hb
J

piz

Similarly, in CM frame, 

⌧a1
⌧1⌧1
= ⌧ b1 +

2

Q2

X

i2Hb
J

(qaJ � qbJ) · pi

⌧

c
1

CM
=

1

x

✓
1� 2

y

p
s

X

i2Hc
J

p

i
z

◆

And, in the 2-jet limit,



Factorization Theorem for 1-Jettiness

Start in QCD:

d�(x, Q

2)
d⌧1

= Lµ⌫(x,Q

2)Wµ⌫(x, Q

2
, ⌧1)

⌧̂1|Xi = ⌧1(X)|Xi

leptonic tensor hadronic tensor

u
ud

W

µ⌫(x,Q2
, ⌧1) =

Z
d

4
x e

iq·xhP |q̄�µ

q(x)�(⌧1 � ⌧̂1)q̄�
⌫

q(0)|P i

u
ud

µ ⌫

x 0

⌧1Measure of particles crossing the cut



jet function

beam function

soft function

hard function

Factorization Theorem for 1-Jettiness

Factor collinear and soft matrix elements:

u
ud

u
ud

x

0

beam function

jet function soft function

(+ permutations)

Wµ⌫(x,Q
2
, ⌧1) =

Z
d

2
p̃?

Z
d⌧Jd⌧Bd⌧S C

⇤(Q2
, µ)C(Q2

, µ) �
⇣
⌧1 �

tJ

sJ
� tB

sB
� kS

QR

⌘

⇥ h0|[Y †
n0
J
Y

†
n0
B
](0)�(kS � n

0
J · p̂J 0 � n

0
B · p̂B0)[Yn0

B
Yn0

J
](0)|0i

⇥ hPnB |�̄nB (0)�(QB⌧B � nB · p̂nB )[�(n̄B · q + n̄B · P)�2(p̃? � P?)�nB ](0)|PnB i
⇥ h0|�nJ (0)�(QJ⌧J � nJ · p̂nJ )�(n̄J · q + n̄J · P)�2(q? + p̃? + P?)�̄nJ (0)|0i



Factorization Theorems for 1-Jettiness
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Factorization Theorems for 1-Jettiness
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Predictions for DIS 1-jettiness
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Predictions for DIS 1-jettiness
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Ligeti, Stewart, Tackmann (2008)



Predictions for DIS 1-jettiness
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Universal Nonperturbative Corrections

• In the tail region, the leading nonperturbative 
correction is again just a shift:
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Universal Nonperturbative Corrections

• In the tail region, the leading nonperturbative 
correction is again just a shift:
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Using factorization theorems and 
boost invariance properties of soft 

Wilson lines, can prove that:
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powerful reduction in uncertainty from nonperturbative hadronization corrections
more reliable extractions of strong coupling and PDFs



Sensitivity to Strong Coupling

0. 0.05 0.1 0.15 0.2 0.250.

0.1

0.2

0.3

0.4

0.5

0.6

ta

ta
ds
êdta

Q=80 GeV
x=0.2NNLL

as=0.115-0.125
as=0.110-0.130

0. 0.05 0.1 0.15 0.2 0.250.

0.25

0.5

0.75

1.

1.25

1.5

1.75

ta

s
c

Q=80 GeV
x=0.2

NNLL

as=0.115-0.125
as=0.110-0.130 Perturbative uncertainty in NNLL 

cumulant similar to the effect of a
variation in  

±5%
↵s(MZ)

This sensitivity will be improved by:

• Combining information from different
• Combining info from different x, Q2

• Improvement of theoretical calculation 
to NNLL’ or N3LL accuracy

⌧ ’s



Summary and Outlook
•Jet Shapes can distinguish jet 

origins

•New predictions of DIS event 
shapes can improve precision of 
strong coupling, PDF extractions

•Jets probe predictions and 
parameters of QCD
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•Tools of Effective Field 
Theory allow improved 
precision in all applications of 
jet physics



How can we probe new states 
of matter with jets?



The Quark Gluon Plasma

Is a new hot, dense state of matter of 
liberated quarks and gluons created in 

Heavy Ion Collisions?

What are its properties?



Probe the Medium with Jets!

When back-to-back jets are produced
in the medium, one may not escape

“jet quenching”



Probe the Medium with Jets!

When back-to-back jets are produced
in the medium, one may not escape

“jet quenching”

Jet Quenching at CMS!



Jet Modification in the Medium

• Heavy Ion Physicists use Jet Energy Loss, Jet Broadening in the medium to probe 
its properties

• Proposal: Use jet shapes to gain more detailed information about these 
medium properties

• New tools: Apply power of SCET to prove factorization, calculate jet shapes 
precisely, resum logarithms!

Vitev,  Wicks, Zhang

work in progress by
D’Eramo, Lekaveckas, CL, Liu, Rajagopal



SCET for Jets in Dense Media

• So far, added to SCET gluons in medium which change (broaden) 
jet’s transverse momenta but do not contribute to their energy loss

• In progress: inclusion of jet energy loss in the medium and soft & 
collinear radiation from jets in progress by D’Eramo, Lekaveckas, CL, Liu, Rajagopal;

Idilbi, Majumder;
Bauer, Lange, Ovanesyan;

D’Eramo, Liu, Rajagopal

Ovanesyan, Vitev



First observations of angularity jet shapes

from CDF Public Note, 
July 19, 2010



First observations of angularity jet shapes

from CDF Public Note, 
July 19, 2010

Caveat: different definition of 
angularity

CDF only plots leading-order, 
leading-log theory prediction

We are now in conversations to 
perform comparison of our 

resummed NLL theory 
prediction for common definition 

of angularity



Event shapes at LHC vs Monte Carlo CMS 1102.0068

Banfi, Salam, Zanderighi

�? = 1�max

n̂T

P
i|pi

? · n̂T |P
i|pi

?|

“Central tranverse thrust”

• Fair agreement but noticeable discrepancies 
between data and MC

• How to assign discrepancy into perturbative 
and nonperturbative contributions?



Jet mass distributions at CDF



Resummed Higgs production cross section
Ahrens, Becher, Neubert, 

Yang(2008)

Fixed order Resummed
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Studied quark v. gluon jets 3 well-
separated jets in e+e-

cuts exist keeping ~2% of gluon jets and 
~20% of quark jets (10:1 enhancement)

or ~15% of gluons and 8% quarks (2:1 
enhancement).

Expect greater discriminating power in 
correlated distributions for multiple values 
of a

PRELIMINARY



Estimate of Theoretical Uncertainty
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Estimate of Theoretical Uncertainty
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QCD, PDFs, and the Strong Coupling

PDG
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Probing Jets At Ever Finer Scales

L R

m2
L,m

2
R

Moving towards studying 
individual jet properties...

Begin to encounter so-
called “non-global” logs

Measure each 
hemisphere/jet 
separately:

e.g. left/right 
hemisphere mass

also can construct heavy/
light hemisphere mass m2

heavy,m
2
light



“Non-Global” Observables and Logs

Measure each 
hemisphere/jet 
separately:

m2
L,m

2
R

L R

d�

dm2
Ldm

2
R

⇠ �(mL)�(mR)Sng(mL,mR)

logs of             or               each
each summable using “ordinary” SCET

mL/Q mR/Q

unknown how to resum “non-global” logs of 

Sng(mL,mR) = 1 +
⇣�s

2⇥

⌘2
CFCA

⇥2

3
ln2

mL

mR
+ · · ·

mL/mR

Dasgupta, Salam

Banfi, Dasgupta, Khelifa-Kerfa, Marzani
...

Soft radiation is sensitive/
probed at more than one scale



Probing Jets At Ever Finer Scales

In hadron collisions, 
encounter PDFs, ISR, 
underlying event....

R
jet radius

jet energy veto E0

Above techniques to measure more 
exclusive jet properties all relevant here.

p p



Jet Substructure

Probe substructure of jets 
to look for evidence of highly-
boosted heavy particle

Top Jets

t

b

W

Thaler, Wang

Kaplan, Rehermann, Schwartz, 
Tweedie

Almeida, Lee, Perez, Sung, Virzi

Butterworth, Davison, 
Rubin, Salam

Plehn, Salam, Spannowsky

Kribs, Martin, Roy, 
Spannowsky

b

b H

Higgs Jets

...BSM Jets

Fan, Krohn, 
Mosteiro, 
Thalapillil, 
Wang

e.g. Squark Jets



“Ordinary” SCET

hard scale µ

single
jet scale

�S

µH = Q

�J

µJ = mL,R

µS = m2
L,R/Q

single
soft scale



“Ordinary” SCET

hard scale

single
soft scale

µ

�S

µH = Q

SCET able to accommodate 
multiple jet scales:

decoupled collinear sectors

but still has only been formulated 
with a single soft scale

µS

m2
L/Q

m2
R/Q

multiple
jet scales

�J

µJ = mL �J

µJ = mR



Soft “Refactorization”

Factorize soft sector into two 
separate soft modes:

Integrating out “harder” soft 
gluon at higher scale generates 

new operators that can emit the 
“softer” soft gluons

µR
S = m2

R/Q

µL
S = m2

L/Q

µS

mL
mR

Hornig, CL, Stewart, 
Walsh, Zuberi

(work in progress)

mR

mR

mL

mL

OS



Soft “Refactorization”

Original “non-global” log 
factorized into separate 
functions which can be 

evolved using EFT 
renormalization group:

µR
S = m2

R/Q

µL
S = m2

L/Q

µS

mR

mR

mL

mL

SL(mL) ⇠
⇣�s

2⇥

⌘2
CFCA

⇥2

3
ln2

µ

mL

SR(mR) ⇠
⇣�s

2⇥

⌘2
CFCA

⇥2

3
ln2

µ

mR

CS(mL)⇤OS(mR)⌅ ⇥
�sCF

2⇥
ln

µ

mL
� �sCA

2⇥

⇥2

3
ln

µ

mR

OS

Hornig, CL, Stewart, 
Walsh, Zuberi

(work in progress)



hard scale

“soft 
SCET”

µ

�S

µH = Q

Summing Jet Algorithm Parameters in SCET

Logs of E0, R in cone or (anti-)kT jet rate:

CL, Walsh, Zuberi
(work in progress)

single
jet scale

�J

µJ = QR

E0R
2

µS = E0

µSC = E0R

µSS = E0R
2

�SC

⇥2(R,E0) = 1� 4�cuspCF ln
2E0

Q
ln tan

R

2
� 3�J ln tan

R

2

Needs addition of “soft-collinear” mode and matching onto new operators at          .O(↵2
s)

R

jet 
radius

jet veto E0



Recap: Jet Observables at Ever Finer Scales



Recap: Jet Observables at Ever Finer Scales

•SCET has resummed global jet 
measures to high precision

Universal nonperturbative shift: CL, Sterman (2007)
Factorization: Bauer, CL, Fleming, Sterman (2008)
Angularity event shapes: Hornig, CL, Ovanesyan (2009)



Recap: Jet Observables at Ever Finer Scales

•SCET has resummed global jet 
measures to high precision

Universal nonperturbative shift: CL, Sterman (2007)
Factorization: Bauer, CL, Fleming, Sterman (2008)
Angularity event shapes: Hornig, CL, Ovanesyan (2009)

•More exclusive jet observables 
sensitive to more scales, require 
additional resummations of logs Angularity jet shapes: Ellis, Hornig, CL, Vermilion, Walsh (2010)

In Progress:

Summation of nonglobal logs: Hornig, CL, Stewart, Walsh, Zuberi
Summation of phase space logs in jet algorithms: CL, Walsh, Zuberi



•Effective Field Theory 
properly separating all scales 
can resum these logarithms 
and opening the frontier of 
precision jet physics!
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Summation of phase space logs in jet algorithms: CL, Walsh, Zuberi



•Effective Field Theory 
properly separating all scales 
can resum these logarithms 
and opening the frontier of 
precision jet physics!

Recap: Jet Observables at Ever Finer Scales

•SCET has resummed global jet 
measures to high precision

Universal nonperturbative shift: CL, Sterman (2007)
Factorization: Bauer, CL, Fleming, Sterman (2008)
Angularity event shapes: Hornig, CL, Ovanesyan (2009)

•More exclusive jet observables 
sensitive to more scales, require 
additional resummations of logs Angularity jet shapes: Ellis, Hornig, CL, Vermilion, Walsh (2010)

In Progress:

Summation of nonglobal logs: Hornig, CL, Stewart, Walsh, Zuberi
Summation of phase space logs in jet algorithms: CL, Walsh, Zuberi

measures of subjet 
masses/shapes

accurate dependence 
on jet vetoes

quark vs. gluon 
discrimination

light QCD vs. top, 
Higgs, BSM jets

Future Projects:



Brief History and Motivation

• In SCET, DIS near the endpoint x = 1 has been studied 
extensively.

• Away from x = 1, the final state can have more than one jet.

• DIS event shapes:

• In QCD, thrust to NLO, resummed to NLL.

• In SCET, (one version of) 1-jettiness at NLL [now NNLL]

• e+e- event shapes have been resummed in SCET to N3LL accuracy 
matched to N3LO, leading to precise extraction of

• Extractions of       from DIS jet cross sections not yet at same 
precision.

• Theoretical tools now available for significant improvement of 
DIS event shape predictions and        extraction

↵s

↵s

↵s

Antonelli, Dasgupta, Salam (1999)

Becher, Schwartz; Chien, Schwartz;
Abbate, Fickinger, Hoang, Mateu, Stewart

Manohar; 
Becher, Neubert, Pecjak; 

Chay, Kim; Chen, Idilbi, Ji, Yuan; 
Fleming, Zhang

Kang, Mantry, Qiu (2012)
[Kang, Liu, Mantry, Qiu 

(yesterday)]



Problems with Jet Cross Sections

• Exclusive jet cross sections (fixed number of jets) typically 
depend on 

• choice of jet algorithm

• jet sizes

• jet vetoes

• These parameters generate a number of logarithms (NGLs, 
clustering logs, log R) in perturbation theory which we do not 
yet know how to resum

• N-Jettiness: an inclusive observable picking out N-jet final 
states by measurement of a single parameter, logs of which can 
be resummed in perturbation theory
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DIS event shapes

e e0

P

HJHB

pB

pJ

Breit frame: qµ = (0, 0, 0, Q)

DIS thrust (review by Dasgupta & Salam ’03)

different versions:

�nQ = 1� 2
Q

�

i�HJ

|�pi · �n|

Q

2
�

�

i�HJ

Ei•

• �n = ẑ fixed to photon/weak boson’s axis

• vary �n to minimize �nQ

�
�C

calculations to NLO & NLL Dasgupta, Salam, ...
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).

THUPL01
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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taken from [14].

Q / GeV
20 40 60 80 100 120

s
#

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Q / GeV
20 40 60 80 100 120

s
#

0.08

0.10

0.12

0.14

0.16

0.18

0.20

H1

)+NLL+PC2
s#NLO(

fits to DISTRIBUTIONS

)=0.1178
Z

(ms#

Event shapes

FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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Fig. 5. Differential distributions for the event shapes 1 − Tγ and Bγ . Other details as in Fig. 4.

Fig. 6. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n

refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for 〈Q〉 = 21, 29, 42, 59, 82 and 113 GeV, respectively. The solid (dashed) curves show the points used (omitted) in the
fit to NLL resummed calculation matched to NLO plus power corrections.

None of the three matching techniques discussed in Section 6.1 is strongly preferred theoreti-
cally. Although the modification terms should be used to ensure the correct behaviour of the cross
section, all options included in DISRESUM have been used. The results of fits using six different
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Fig. 4. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n
refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for 〈Q〉 = 21, 29, 42, 59, 82 and 113 GeV, respectively. Predictions of ARIADNE at the hadron (solid lines) and parton
(dashed lines) levels are shown.

the power correction becomes positive and the fitted values of αs (α0) change to 0.1285(0.3541),
values that are in closer agreement with the other variables. If the model were robust, the fitted
values of αs would be independent of µI . However a dependence on µI is clearly evident in the
tables. In view of these results, no attempt to extract combined values of (α0,αS) from the mean
event shapes was made.

10.2. Differential distributions

The differential distributions of the event-shape variables for Q2 > 320 GeV2 are compared
to the predictions of ARIADNE in Figs. 4 and 5. For all variables, ARIADNE describes the data
well. The parton level of ARIADNE is also shown. The difference between the hadron and parton
levels can be taken as illustrative of the hadronisation correction.

The differential distributions for (1 − Tγ ), Bγ , M2, C and (1 − TT ), for which the theoretical
predictions are available, have been fitted with NLL+NLO+PC calculations as shown in Figs. 6
and 7. The solid (dashed) bars show the bins that were used (unused) in the fit as described in
Section 7.
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Transverse jet and beam momenta
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Transverse jet and beam momenta
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difference between qJ axes for case A and B is a leading-order 
effect on the argument of beam and jet functions
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Hard and Jet Functions
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anomalous dimension known to 3 loops



Beam Function and PDFs
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Generalized Beam Function at 1-loop

Tells us that PDFs should be evaluated at the beam radiation scale t
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Nonperturbative Soft Model Function
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Basis coefficients, width and gap should be fit to data for one event shape and value of Q. 
Universality allows predictions for other event shapes and values of Q.

In following results, the following 
model function will be used:

Ligeti, Stewart, Tackmann (2008)

Convolution of perturbative soft function (soft radiation)
with nonperturbative model function (hadronization):



III. Predictions for DIS 1-Jettiness

at Next-to- Next-to- Leading-Log



• Order of logarithmic accuracy (LL, NLL, etc.) depends on 
accuracy to which anomalous dimensions and fixed-order 
matrix elements are known:

Resummation of Logs
• Solution of RG Equation automatically resums logs to all 

orders in ↵s

LL 1 1

NLL 1

NNLL

�F �F cF �[↵s]

↵s

↵s

↵s

↵s

↵2
s ↵2

s

↵2
s↵3

s ↵3
s



• Order of logarithmic accuracy (LL, NLL, etc.) depends on 
accuracy to which anomalous dimensions and fixed-order 
matrix elements are known:

Resummation of Logs
• Solution of RG Equation automatically resums logs to all 

orders in ↵s

LL 1 1

NLL 1

NNLL

�F �F cF �[↵s]

↵s

↵s

↵s

↵s

↵2
s ↵2

s

↵2
s↵3

s ↵3
s

+ 1 order for 
primed counting



• Order of logarithmic accuracy (LL, NLL, etc.) depends on 
accuracy to which anomalous dimensions and fixed-order 
matrix elements are known:

Resummation of Logs
• Solution of RG Equation automatically resums logs to all 
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All pieces known 
for DIS 1-jettiness

+ 1 order for 
primed counting





• Calculate rapidity gap distribution

• Two-loop beam function and constant in two-loop soft funciton 
can be used to achieve N3LL accuracy

• Heard about a 2-loop quark beam function here [Lübbert, Gehrmann, Yang]

• Calculate fixed order 1-loop 1-jettiness cross sections in QCD 
to accurately predict far tail (large     ) region

• Comparison to data for improved extraction of strong coupling, 
nonperturbative soft function, and PDFs

⌧1

The Future



Conclusions

• We have computed 1-jettiness cross sections 
probing 2 jets in DIS in 3 different ways

• We used SCET to factorize and resum the cross sections to NNLL 
accuracy, the highest achieved to date for DIS jet cross sections

• SCET provides the tools:

• to vastly improve the perturbative accuracy of large classes 
of cross sections in medium and high-energy nuclear and 
particle physics

• to improve the extraction of universal nonperturbative 
functions and the strong coupling


